Araştırma Çıktıları

Permanent URI for this communityhttps://hdl.handle.net/11443/931

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Leukocyte telomere length as a compensatory mechanism in vitamin D metabolism
    (PUBLIC LIBRARY SCIENCE, 2022-01-01) Agirbasli, Deniz; Kalyoncu, Minenur; Muftuoglu, Meltem; Aksungar, Fehime Benli; Agirbasli, Mehmet
    Vitamin D deficiency is common among postmenopausal women. Telomere length can be a potential protective mechanism for age-related diseases. The objective of our study is to examine the association of vitamin D supplementation on leukocyte telomere length (LTL) in healthy postmenopausal women with vitamin D deficiency. The study was designed as a placebo-controlled study to investigate the short-term effects of vitamin D supplementation and seasonal changes on vitamin D related parameters, including 25(OH)D, 1,25(OH)(2)D parathormone (PTH), Vitamin D binding protein (VDBP), vitamin D receptor (VDR), and telomere length in a cohort of postmenopausal women (n = 102). The group was divided as supplementation (n = 52) and placebo groups (n = 50). All parameters were measured before and after treatment. Serum VDBP levels were measured by ELISA method and VDR, GC (VDBP) gene expressions and relative telomere lengths were measured in peripheral blood mononuclear cells (PBMC) using a quantitative real-time PCR method. The results demonstrate that baseline levels were similar between the groups. After vitamin D supplementation 25(OH)D, 1,25(OH)(2)D, PTH and VDBP levels were changed significantly compared to the placebo group. At the end of the study period, LTL levels were significantly increased in both groups and this change was more prominent in placebo group. The change in GC expression was significant between treatment and placebo groups but VDR expression remained unchanged. Even though the study was designed to solely assess the effects of vitamin D supplementation, LTL was significantly increased in the whole study group in summer months suggesting that LTL levels are affected by sun exposure and seasonal changes rather than supplementation. The study displayed the short-term effect of Vitamin D supplementation on vitamin D, PTH levels, LTL and vitamin D associated gene expressions. The relation between Vitamin D and LTL is not linear and could be confounded by several factors such as the population differences, regional and seasonal changes in sun exposure.
  • Item
    Anti-proliferative effects of indomethacin, acemetacin and their tromethamine salts in HCT116 human colon cancer cells
    (ISTANBUL UNIV, FAC PHARMACY, 2021-01-01) Ustundag, Gokce Cihan; Somuncu, Berna; Muftuoglu, Meltem; Karali, Nilgun
    Background and Aims: Since 1980's, several preclinical studies have been published on the anti-colorectal cancer activity of the nonsteroidal anti-inflammatory drug indomethacin. The direct anti-proliferative effect of indomethacin seems to occur via a variety of reported COX-independent mechanisms. Acemetacin is a glycolic acid ester derivative of indomethacin and contrary to indomethacin, there is not much published research on anti-cancer effects of acemetacin. Herein, we compared the in vitro anti-proliferative properties of indomethacin, acemetacin, and their tromethamine salts in HCT116 colon cancer cells. Methods: The tromethamine salts of indomethacin and acemetacin were synthesized and the structures were established by microanalysis, IR, H-1-NMR, C-13-NMR (APT) and 2D-NMR (HSQC and HMBC) spectrometry. Cell proliferation assays were performed using xCELLigence real-time cell analysis system. Results: Indomethacin exhibited profound inhibitory effects with IC50 values at low micromolar ranges. Acemetacin exhibited far lower cytotoxic activity as compared to that of indomethacin. Surprisingly, indomethacin-tromethamine salt was 2-fold and 4.4-fold more potent than indomethacin at 48 and 72 h, respectively, while maintaining its activity at 24 h. The tromethamine salt of acemetacin was more potent than acemetacin at 24 h and 48 h post-treatment. Conclusion: The anti-proliferative effect of indomethacin in HCT116 cells was found to be at low micro-molar levels. The esterification of indomethacin with glycolic acid caused a strong decrease in anti-proliferative effect. The salt formation caused a positive effect on the anti-proliferative activity of indomethacin and indomethacin-tromethamine salt may be a promising candidate for additional in vivo studies.