Browsing by Author "Elibol, Omer"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates(NATURE RESEARCH, 2021-01-01) Karakus, Gozde Sir; Tastan, Cihan; Kancagi, Derya Dilek; Yurtsever, Bulut; Tumentemur, Gamze; Demir, Sevda; Turan, Raife Dilek; Abanuz, Selen; Cakirsoy, Didem; Seyis, Utku; Ozer, Samed; Elibol, Omer; Elek, Muhammer; Ertop, Gurcan; Arbale, Serap; Elmas, Merve Acikel; Hermsinlioglu, Canso; Kocagoz, Ayse Sesin; Ng, Ozden Hatirnaz; Akyoney, Sezer; Sahin, Ilayda; Ozbek, Ugur; Telci, Dilek; Sahin, Fikrettin; Yalcin, Koray; Ratip, Siret; Ovali, ErcumentCOVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed. The candidate vaccines in this study were OZG-3861 version 1(V1), an inactivated SARS-CoV-2 virus vaccine, and SK-01 version 1 (V1), a GM-CSF adjuvant added vaccine. The candidate vaccines were applied intradermally to BALB/c mice to assess toxicity and immunogenicity. Preliminary results in vaccinated mice are reported in this study. Especially, the vaccine models containing GM-CSF caused significant antibody production with neutralization capacity in absence of the antibody-dependent enhancement feature, when considered in terms of T and B cell responses. Another important finding was that the presence of adjuvant was more important in T cell in comparison with B cell response. Vaccinated mice showed T cell response upon restimulation with whole inactivated SARS-CoV-2 or peptide pool. This study shows that the vaccines are effective and leads us to start the challenge test to investigate the gamma-irradiated inactivated vaccine candidates for infective SARS-CoV-2 virus in humanized ACE2+ mice.Item SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients(2004-01-01) Tastan, Cihan; Yurtsever, Bulut; Karakus, Gozde Sir; Kancagi, Derya Dilek; Demir, Sevda; Abanuz, Selen; Seyis, Utku; Yildirim, Mulazim; Kuzay, Recai; Elibol, Omer; Arbak, Serap; Elmas, Merve Acikel; Birdogan, Selcuk; Sezerman, Osman Ugur; Kocagoz, Aye Sesin; Yalcin, Koray; Ovali, ErcumentThe novel coronavirus pneumonia, which was named later as coronavirus disease 2019 (COVID-19), is caused by the severe acute respiratory syndrome coronavirus 2, namely SARS-CoV-2. It is a positive-strand RNA virus that is the seventh coronavirus known to infect humans. The COVID-19 outbreak presents enormous challenges for global health behind the pandemic outbreak. The first diagnosed patient in Turkey has been reported by the Republic of Turkey Ministry of Health on March 11, 2020. In May, over 150,000 cases in Turkey, and 5.5 million cases around the world have been declared. Due to the urgent need for a vaccine and antiviral drug, isolation of the virus is crucial. Here, we report 1 of the first isolation and characterization studies of SARS-CoV-2 from nasopharyngeal and oropharyngeal specimens of diagnosed patients in Turkey. This study provides an isolation and replication methodology,and cell culture tropism of the virus that will be available to the research communities.