Browsing by Author "Yuksel, Sirin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene(NATURE PUBLISHING GROUP, 2015-01-01) Bayrakli, Fatih; Poyrazoglu, Hatice Gamze; Yuksel, Sirin; Yakicier, Cengiz; Erguner, Bekir; Sagiroglu, Mahmut Samil; Yuceturk, Betul; Ozer, Bugra; Doganay, Selim; Tanrikulu, Bahattin; Seker, Askin; Akbulut, Fatih; Ozen, Ali; Per, Huseyin; Kumandas, Sefer; Torun, Yasemin Altuner; Bayri, Yasar; Sakar, Mustafa; Dagcinar, Adnan; Ziyal, IbrahimWe report an association between a new causative gene and spastic paraplegia, which is a genetically heterogeneous disorder. Clinical phenotyping of one consanguineous family followed by combined homozygosity mapping and whole-exome sequencing analysis. Three patients from the same family shared common features of progressive complicated spastic paraplegia. They shared a single homozygous stretch area on chromosome 6. Whole-exome sequencing revealed a homozygous mutation (c.853\_871del19) in the gene coding the kinesin light chain 4 protein (KLC4). Meanwhile, the unaffected parents and two siblings were heterozygous and one sibling was homozygous wild type. The 19 bp deletion in exon 6 generates a stop codon and thus a truncated messenger RNA and protein. The association of a KLC4 mutation with spastic paraplegia identifies a new locus for the disease.Item IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation(NATURE PUBLISHING GROUP, 2016-01-01) Oktay, Yavuz; Ulgen, Ege; Can, Ozge; Akyerli, Cemaliye B.; Yuksel, Sirin; Erdemgil, Yigit; Durasi, I. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Sevin; Ozpinar, Aysel; Huse, Jason T.; Sav, M. Aydin; Flanagan, Adrienne; Gunel, Murat; Sezerman, O. Ugur; Yakicier, M. Cengiz; Pamir, M. Necmettin; Ozduman, KorayThe single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17-16.52Item Mutation in MEOX1 gene causes a recessive Klippel-Feil syndrome subtype(BIOMED CENTRAL LTD, 2013-01-01) Bayrakli, Fatih; Guclu, Bulent; Yakicier, Cengiz; Balaban, Hatice; Kartal, Ugur; Erguner, Bekir; Sagiroglu, Mahmut Samil; Yuksel, Sirin; Ozturk, Ahmet Rasit; Kazanci, Burak; Ozum, Unal; Kars, Hamit ZaferBackground: Klippel-Feil syndrome (KFS) is characterized by the developmental failure of the cervical spine and has two dominantly inherited subtypes. Affected individuals who are the children of a consanguineous marriage are extremely rare in the medical literature, but the gene responsible for this recessive trait subtype of KFS has recently been reported. Results: We identified a family with the KFS phenotype in which their parents have a consanguineous marriage. Radiological examinations revealed that they carry fusion defects and numerical abnormalities in the cervical spine, scoliosis, malformations of the cranial base, and Sprengel's deformity. We applied whole genome linkage and whole-exome sequencing analysis to identify the chromosomal locus and gene mutated in this family. Whole genome linkage analysis revealed a significant linkage to chromosome 17q12-q33 with a LOD score of 4.2. Exome sequencing identified the G > A p.Q84X mutation in the MEOX1 gene, which is segregated based on pedigree status. Homozygous MEOX1 mutations have reportedly caused a similar phenotype in knockout mice. Conclusions: Here, we report a truncating mutation in the MEOX1 gene in a KFS family with an autosomal recessive trait. Together with another recently reported study and the knockout mouse model, our results suggest that mutations in MEOX1 cause a recessive KFS phenotype in humans.