Research Articles
Permanent URI for this collectionhttps://hdl.handle.net/11443/2898
GEMSTONE Horizon Europe Project Research Articles
Browse
2 results
Search Results
Item The Role of Glial Cells in the Pathophysiology of Epilepsy(MDPI, 2025-01-10) Onat, Filiz; Andersson, My; Çarçak, NihanAbstract Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood–brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron–glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.Item Involvement of orexin type-2 receptors in genetic absence epilepsy rats(Frontiers, 2023-11-30) Toplu, Aylin; Mutlu, Nursima; Erdeve, Elif Tuğçe; Sarıyıldız, Özge; Çelik, Musa; Arslan, Devrim Öz; Akman, Özlem; Molnar, Zoltar; Çarçak, Nihan; Onat, FilizIntroduction: Orexin is a neuropeptide neurotransmitter that regulates the sleep/ wake cycle produced by the lateral hypothalamus neurons. Recent studies have shown the involvement of orexin system in epilepsy. Limited data is available about the possible role of orexins in the pathophysiology of absence seizures. This study aims to understand the role of orexinergic signaling through the orexin-type 2 receptor (OX2R) in the pathophysiology of absence epilepsy. The pharmacological effect of a selective OX2R agonist, YNT-185 on spike-andwave- discharges (SWDs) and the OX2R receptor protein levels in the cortex and thalamus in adult GAERS were investigated. Methods: The effect of intracerebroventricular (ICV) (100, 300, and 600 nmol/10 μL), intrathalamic (30 and 40 nmol/500 nL), and intracortical (40 nmol/500 nL) microinjections of YNT-185 on the duration and number of spontaneous SWDs were evaluated in adult GAERS. The percentage of slowwave sleep (SWS) and spectral characteristics of background EEG were analyzed after the ICV application of 600 nmol YNT-185. The level of OX2R expression in the somatosensory cortex and projecting thalamic nuclei of adult GAERS were examined by Western blot and compared with the non-epileptic Wistar rats. Results: We showed that ICV administration of YNT-185 suppressed the cumulative duration of SWDs in GAERS compared to the saline-administered control group (p < 0.05). However, intrathalamic and intracortical microinjections of YNT-185 did not show a significant effect on SWDs. ICV microinjections of YNT-185 affect sleep states by increasing the percentage of SWS and showed a significant treatment effect on the 1–4 Hz delta frequency band power during the 1–2 h post-injection period where YNT-185 significantly decreased the SWDs. OXR2 protein levels were significantly reduced in the cortex and thalamus of GAERS when compared to Wistar rats. Conclusion: This study investigated the efficacy of YNT-185 for the first time on absence epilepsy in GAERS and revealed a suppressive effect of OX2R agonist on SWDs as evidenced by the significantly reduced expression of OX2R in the cortex and thalamus. YNT-185 effect on SWDs could be attributed to its regulation of wake/sleep states. The results constitute a step toward understanding the effectiveness of orexin neuropeptides on absence seizures in GAERS and might be targeted by therapeutic intervention for absence epilepsy.