Targeting SARS-CoV-2 infection through CAR-T-like bispecific T cell engagers incorporating ACE2

Abstract

Objectives. Despite advances in antibody treatments and vaccines, COVID-19 caused by SARS-CoV-2 infection remains a major health problem resulting in excessive morbidity and mortality and the emergence of new variants has reduced the effectiveness of current vaccines. Methods. Here, as a proof-of-concept, we engineered primary CD8 T cells to express SARS-CoV-2 Spike protein-specific CARs, using the extracellular region of ACE2 and demonstrated their highly specific and potent cytotoxicity towards Spike-expressing target cells. To improve on this concept as a potential therapeutic, we developed a bispecific T cell engager combining ACE2 with an anti-CD3 scFv (ACE2-Bite) to target infected cells and the virus. Results. As in CAR-T cell approach, ACE2-Bite endowed cytotoxic cells to selectively kill Spike-expressing targets. Furthermore, ACE2-Bite neutralized the pseudoviruses of SARS-CoV, SARS-CoV-2 wild-type, and variants including Delta and Omicron, as a decoy protein. Remarkably, ACE2-Bite molecule showed a higher binding and neutralization affinity to Delta and Omicron variants compared to SARS-CoV-2 wild-type Spike proteins. Conclusion. In conclusion, these results suggest the potential of this approach as a variant-proof, therapeutic strategy for future SARS-CoV-2 variants, employing both humoral and cellular arms of the adaptive immune response.

Description

Keywords

ACE2-Bite, CAR-T cell, COVID-19, Delta, Omicron, SARS-CoV-2

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By