Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: a multi-center study
| dc.contributor.author | Karagoz, Ahmet | |
| dc.contributor.author | Alis, Deniz | |
| dc.contributor.author | Seker, Mustafa Ege | |
| dc.contributor.author | Zeybel, Gokberk | |
| dc.contributor.author | Yergin, Mert | |
| dc.contributor.author | Oksuz, Ilkay | |
| dc.contributor.author | Karaarslan, Ercan | |
| dc.date.accessioned | 2025-10-16T15:15:06Z | |
| dc.date.issued | 2023 | |
| dc.identifier.doi | 10.1186/s13244-023-01439-0 | |
| dc.identifier.other | WOS:001015034300002 | |
| dc.identifier.uri | https://openaccess.acibadem.edu.tr/handle/11443/6369 | |
| dc.publisher | SPRINGER WIEN | |
| dc.source | INSIGHTS INTO IMAGING | |
| dc.subject | Deep learning | |
| dc.subject | Magnetic resonance imaging | |
| dc.subject | Prostate cancer | |
| dc.title | Anatomically guided self-adapting deep neural network for clinically significant prostate cancer detection on bi-parametric MRI: a multi-center study | |
| dc.type | Article |
