Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI
| dc.contributor.author | Erdogan, Sinem Burcu | |
| dc.contributor.author | Ozsarfati, Eran | |
| dc.contributor.author | Dilek, Burcu | |
| dc.contributor.author | Kadak, Kubra Sogukkanli | |
| dc.contributor.author | Hanoglu, Lutfu | |
| dc.contributor.author | Akin, Ata | |
| dc.date.accessioned | 2025-10-16T15:24:03Z | |
| dc.date.issued | 2019 | |
| dc.identifier.doi | 10.1088/1741-2552/aafdca | |
| dc.identifier.other | WOS:000459251100005 | |
| dc.identifier.uri | https://openaccess.acibadem.edu.tr/handle/11443/8055 | |
| dc.publisher | IOP Publishing Ltd | |
| dc.source | JOURNAL OF NEURAL ENGINEERING | |
| dc.subject | functional near infrared spectroscopy | |
| dc.subject | brain\\-computer interface | |
| dc.subject | random forest | |
| dc.subject | support vector machines | |
| dc.subject | artificial neural networks | |
| dc.subject | motor imagery | |
| dc.subject | motor execution | |
| dc.title | Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI | |
| dc.type | Article |
