Defining mitochondrial protein functions through deep multiomic profiling

dc.contributor.authorRensvold, Jarred W.
dc.contributor.authorShishkova, Evgenia
dc.contributor.authorSverchkov, Yuriy
dc.contributor.authorMiller, Ian J.
dc.contributor.authorCetinkaya, Arda
dc.contributor.authorPyle, Angela
dc.contributor.authorManicki, Mateusz
dc.contributor.authorBrademan, Dain R.
dc.contributor.authorAlanay, Yasemin
dc.contributor.authorRaiman, Julian
dc.contributor.authorJochem, Adam
dc.contributor.authorHutchins, Paul D.
dc.contributor.authorPeters, Sean R.
dc.contributor.authorLinke, Vanessa
dc.contributor.authorOvermyer, Katherine A.
dc.contributor.authorSalome, Austin Z.
dc.contributor.authorHebert, Alexander S.
dc.contributor.authorVincent, Catherine E.
dc.contributor.authorKwiecien, Nicholas W.
dc.contributor.authorRush, Matthew J. P.
dc.contributor.authorWestphall, Michael S.
dc.contributor.authorCraven, Mark
dc.contributor.authorAkarsu, Nurten A.
dc.contributor.authorTaylor, Robert W.
dc.contributor.authorCoon, Joshua J.
dc.contributor.authorPagliarini, David J.
dc.date.accessioned2023-02-21T12:40:42Z
dc.date.available2023-02-21T12:40:42Z
dc.date.issued2022-01-01
dc.description.abstractMitochondria are epicentres of eukaryotic metabolism and bioenergetics. Pioneering efforts in recent decades have established the core protein componentry of these organelles(1) and have linked their dysfunction to more than 150 distinct disorders(2,3). Still, hundreds of mitochondrial proteins lack clear functions(4), and the underlying genetic basis for approximately 40\% of mitochondrial disorders remains unresolved(5). Here, to establish a more complete functional compendium of human mitochondrial proteins, we profiled more than 200 CRISPR-mediated HAP1 cell knockout lines using mass spectrometry-based multiomics analyses. This effort generated approximately 8.3 million distinct biomolecule measurements, providing a deep survey of the cellular responses to mitochondrial perturbations and laying a foundation for mechanistic investigations into protein function. Guided by these data, we discovered that PIGY upstream open reading frame (PYURF) is an S-adenosylmethionine-dependent methyltransferase chaperone that supports both complex I assembly and coenzyme Q biosynthesis and is disrupted in a previously unresolved multisystemic mitochondrial disorder. We further linked the putative zinc transporter SLC30A9 to mitochondrial ribosomes and OxPhos integrity and established RAB5IF as the second gene harbouring pathogenic variants that cause cerebrofaciothoracic dysplasia. Our data, which can be explored through the interactive online MITOMICS.app resource, suggest biological roles for many other orphan mitochondrial proteins that still lack robust functional characterization and define a rich cell signature of mitochondrial dysfunction that can support the genetic diagnosis of mitochondrial diseases.
dc.description.issue7913
dc.description.issueJUN 9
dc.description.pages382+
dc.description.volume606
dc.identifier.doi10.1038/s41586-022-04765-3
dc.identifier.urihttps://hdl.handle.net/11443/2642
dc.identifier.urihttp://dx.doi.org/10.1038/s41586-022-04765-3
dc.identifier.wosWOS:000802325500004
dc.publisherNATURE PORTFOLIO
dc.relation.ispartofNATURE
dc.titleDefining mitochondrial protein functions through deep multiomic profiling
dc.typeArticle

Files

Collections