WOS

Permanent URI for this collectionhttps://hdl.handle.net/11443/932

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Neoadjuvant therapy in pancreatic cancer: what is the true oncological benefit?
    (SPRINGER, 2020-01-01) Ren, Lei; Mota Reyes, Carmen; Friess, Helmut; Demir, Ihsan Ekin
    Background Neoadjuvant therapies (neoTx) have revolutionized the treatment of borderline resectable (BR) and locally advanced (LA) pancreatic cancer (PCa) by significantly increasing the rate of R0 resections, which remains the only curative strategy for these patients. However, there is still room for improvement of neoTx in PCa. Purpose Here, we aimed to critically analyze the benefits of neoTx in LA and BR PCa and its potential use on patients with resectable PCa. We also explored the feasibility of arterial resection (AR) to increase surgical radicality and the incorporation of immunotherapy to optimize neoadjuvant approaches in PCa. Conclusion For early stage, i.e., resectable, PCa, there is not enough scientific evidence for routinely recommending neoTx. For LA and BR PCa, optimization of neoadjuvant therapy necessitates more sophisticated complex surgical resections, machine learning and radiomic approaches, integration of immunotherapy due to the high antigen load, standardized histopathological assessment, and improved multidisciplinary communication.
  • Item
    Molecular Profiling in Pancreatic Cancer: Current Role and Its Impact on Primary Surgery
    (KARGER, 2019-01-01) Mota Reyes, Carmen; Dogruoez, Alper; Istvanffy, Rouzanna; Friess, Helmut; Ceyhan, Gueralp O.; Demir, Ihsan Ekin
    Background: The advent of next-generation sequencing technologies has enabled the identification of molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) with different biological traits and clinically targetable features. Summary: Although current chemotherapy trials are currently exploiting this knowledge, these molecular subtypes have not yet sufficiently caught the attention of surgeons. In fact, integration of these molecular subtypes into the timing of surgery can in theory improve patient outcome. Here, we present the molecular subtypes of PDAC from the surgeon's perspective and a clinically applicable algorithm that integrates the molecular subtyping of PDAC preoperatively into the decision of primary surgery versus neoadjuvant therapy. Furthermore, we point out the potential of ``tailored{''} (in addition to conventional) neoadjuvant treatment for exploiting the molecular subtypes of PDAC. Key Messages: We believe that for surgeons, the preoperative knowledge on the subtype of PDAC can properly guide in deciding between upfront surgery versus neoadjuvant treatment for improving patient outcome.