WOS

Permanent URI for this collectionhttps://hdl.handle.net/11443/932

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Effect of modified Blalock-Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow
    (TURKISH SOC CARDIOLOGY, 2018-01-01) Arnaz, Ahmet; Piskin, Senol; Oguz, Gokece Nur; Yalcinbas, Yusuf; Pekkan, Kerem; Sarioglu, Tayyar
    Objective: This study aimed to identify the best graft-to-pulmonary artery (PA) anastomosis angle measuring pulmonary blood flow, wall shear stress (WSS), and shunt flow. Methods: A tetralogy of Fallot with pulmonary atresia computer model was used to study three different modified Blalock-Taussig shunt (mBTS) anastomosis angle configurations with three different PA diameter configurations. Velocity and WSS were analyzed, and the flow rates at the right PA (RPA) and left PA (LPA) were calculated. Results: A 4-mm and 8-mm diameter of RPA and LPA, respectively with vertical shunt angle produces the highest total flow. In the RPA larger diameter than the LPA configutations, the left-leaning shunt produces the lowest total PA flow whereas in the LPA larger diameter than the RPA configuratios, the right-leaning shunt produces the lowest total PA flow. Therefore, the shunt anastomosis should not be leaned through the narrow side of PA to reach best flow. As the flow inside the shunt increased, WSS also increased due to enhanced velocity gradients. Conclusion: The anastomosis angle between the conduit and PA affects the flow to PA. Vertical anastomosis configurations increase the total PA flow
  • Item
    Tetralogy of Fallot Surgical Repair: Shunt Configurations, Ductus Arteriosus and the Circle of Willis
    (SPRINGER, 2017-01-01) Piskin, Senol; Unal, Gozde; Arnaz, Ahmet; Sarioglu, Tayyar; Pekkan, Kerem
    In this study, hemodynamic performance of three novel shunt configurations that are considered for the surgical repair of tetralogy of Fallot (TOF) disease are investigated in detail. Clinical experience suggests that the shunt location, connecting angle, and its diameter can influence the post-operative physiology and the neurodevelopment of the neonatal patient. An experimentally validated second order computational fluid dynamics (CFD) solver and a parametric neonatal diseased great artery model that incorporates the ductus arteriosus (DA) and the full patient-specific circle of Willis (CoW) are employed. Standard truncated resistance CFD boundary conditions are compared with the full cerebral arterial system, which resulted 21, -13, and 37\% difference in flow rate at the brachiocephalic, left carotid, and subclavian arteries, respectively. Flow splits at the aortic arch and cerebral arteries are calculated and found to change with shunt configuration significantly for TOF disease. The central direct shunt (direct shunt) has pulmonary flow 5\% higher than central oblique shunt (oblique shunt) and 23\% higher than modified Blalock Taussig shunt (RPA shunt) while the DA is closed. Maximum wall shear stress (WSS) in the direct shunt configuration is 9 and 60\% higher than that of the oblique and RPA shunts, respectively. Patent DA, significantly eliminated the pulmonary flow control function of the shunt repair. These results suggests that, due to the higher flow rates at the pulmonary arteries, the direct shunt, rather than the central oblique, or right pulmonary artery shunts could be preferred by the surgeon. This extended model introduced new hemodynamic performance indices for the cerebral circulation that can correlate with the post-operative neurodevelopment quality of the patient.
  • Thumbnail Image
    Item
    In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients
    (MOSBY-ELSEVIER, 2018-01-01) Pekkan, Kerem; Aka, Ibrahim Basar; Tutsak, Ece; Ermek, Erhan; Balim, Haldun; Lazoglu, Ismail; Turkoz, Riza
    Background: Palliative repair of single ventricle defects involve a series of open-heart surgeries where a single-ventricle (Fontan) circulation is established. As the patient ages, this paradoxical circulation gradually fails, because of its high venous pressure levels. Reversal of the Fontan paradox requires an extra subpulmonic energy that can be provided through mechanical assist devices. The objective of this study was to evaluate the hemodynamic performance of a totally implantable integrated aortic-turbine venous-assist (iATVA) system, which does not need an external drive power and maintains low venous pressure chronically, for the Fontan circulation. Methods: Blade designs of the co-rotating turbine and pump impellers were developed and 3 prototypes were manufactured. After verifying the single-ventricle physiology at a pulsatile in vitro circuit, the hemodynamic performance of the iATVA system was measured for pediatric and adult physiology, varying the aortic steal percentage and circuit configurations. The iATVA system was also tested at clinical off-design scenarios. Results: The prototype iATVA devices operate at approximately 800 revolutions per minute and extract up to 10\% systemic blood from the aorta to use this hydrodynamic energy to drive a blood turbine, which in turn drives a mixed-flow venous pump passively. By transferring part of the available energy from the single-ventricle outlet to the venous side, the iATVA system is able to generate up to approximately 5 mm Hg venous recovery while supplying the entire caval flow. Conclusions: Our experiments show that a totally implantable iATVA system is feasible, which will eliminate the need for external power for Fontan mechanical venous assist and combat gradual postoperative venous remodeling and Fontan failure.