WOS

Permanent URI for this collectionhttps://hdl.handle.net/11443/932

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Investigation of multiple sclerosis-related pathways through the integration of genomic and proteomic data
    (PEERJ INC, 2021-01-01) Everest, Elif; Ulgen, Ege; Uygunoglu, Ugur; Tutuncu, Melih; Saip, Sabahattin; Sezerman, Osman Ugur; Siva, Aksel; Turanli, Eda Tahir
    Background. Multiple sclerosis (MS) has a complex pathophysiology, variable clinical presentation, and unpredictable prognosis
  • Item
    Proteomic profiling of HBV infected liver biopsies with different fibrotic stages
    (BMC, 2017-01-01) Katrinli, Seyma; Ozdil, Kamil; Sahin, Abdurrahman; Ozturk, Oguzhan; Kir, Gozde; Baykal, Ahmet Tarik; Akgun, Emel; Sarac, Omer Sinan; Sokmen, Mehmet; Doganay, H. Levent; Doganay, Gizem Dinler
    Background: Hepatitis B virus (HBV) is a global health problem, and infected patients if left untreated may develop cirrhosis and eventually hepatocellular carcinoma. This study aims to enlighten pathways associated with HBV related liver fibrosis for delineation of potential new therapeutic targets and biomarkers. Methods: Tissue samples from 47 HBV infected patients with different fibrotic stages (F1 to F6) were enrolled for 2D-DIGE proteomic screening. Differentially expressed proteins were identified by mass spectrometry and verified by western blotting. Functional proteomic associations were analyzed by EnrichNet application. Results: Fibrotic stage variations were observed for apolipoprotein A1 (APOA1), pyruvate kinase PKM (KPYM), glyceraldehyde 3-phospahate dehydrogenase (GAPDH), glutamate dehydrogenase (DHE3), aldehyde dehydrogenase (ALDH2), alcohol dehydrogenase (ALDH1A1), transferrin (TRFE), peroxiredoxin 3 (PRDX3), phenazine biosynthesis-like domain-containing protein (PBLD), immuglobulin kappa chain C region (IGKC), annexin A4 (ANXA4), keratin 5 (KRT5). Enrichment analysis with Reactome and Kegg databases highlighted the possible involvement of platelet release, glycolysis and HDL mediated lipid transport pathways. Moreover, string analysis revealed that HIF-1 alpha (Hypoxia-inducible factor 1-alpha), one of the interacting partners of HBx (Hepatitis B X protein), may play a role in the altered glycolytic response and oxidative stress observed in liver fibrosis. Conclusions: To our knowledge, this is the first protomic research that studies HBV infected fibrotic human liver tissues to investigate alterations in protein levels and affected pathways among different fibrotic stages. Observed changes in the glycolytic pathway caused by HBx presence and therefore its interactions with HIF-1a can be a target pathway for novel therapeutic purposes.