WOS
Permanent URI for this collectionhttps://hdl.handle.net/11443/932
Browse
2 results
Search Results
Item Robust joint modelling of longitudinal and survival data: Incorporating a time-varying degrees-of-freedom parameter(WILEY, 2021-01-01) McFetridge, Lisa M.; Asar, Ozgur; Wallin, JonasMonitoring of individual biomarkers has the potential of explaining the hazard of survival outcomes. In practice, these measurements are intermittently observed and are known to be subject to substantial measurement error. Joint modelling of longitudinal and survival data enables us to associate intermittently measured error-prone biomarkers with risks of survival outcomes and thus plays an important role in the analysis of medical data. Most of the joint models available in the literature have been built on the Gaussian assumption. This makes them sensitive to outliers. In this work, we study a range of robust models to address this issue. Of particular interest is the common occurrence in medical data that outliers can occur with different frequencies over time, for example, in the period when patients adjust to treatment changes. Motivated by the analysis of data gathered from patients with primary biliary cirrhosis, a new model with a time-varying robustness is introduced. Through both the motivating example and a simulation study, this research not only stresses the need to account for longitudinal outliers in the analysis of medical data and in joint modelling research but also highlights the bias and inefficiency from not properly estimating the degrees-of-freedom parameter. This work presents a number of methods in addition to the time-varying robustness, and each method can be fitted using the R package robjm.Item Dynamic predictions of kidney graft survival in the presence of longitudinal outliers(SAGE PUBLICATIONS LTD, 2021-01-01) Asar, Ozgur; Fournier, Marie-Cecile; Dantan, EtienneIn kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework witht-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.