Araştırma Çıktıları

Permanent URI for this communityhttps://hdl.handle.net/11443/931

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Proteomic profiling of HBV infected liver biopsies with different fibrotic stages
    (BMC, 2017-01-01) Katrinli, Seyma; Ozdil, Kamil; Sahin, Abdurrahman; Ozturk, Oguzhan; Kir, Gozde; Baykal, Ahmet Tarik; Akgun, Emel; Sarac, Omer Sinan; Sokmen, Mehmet; Doganay, H. Levent; Doganay, Gizem Dinler
    Background: Hepatitis B virus (HBV) is a global health problem, and infected patients if left untreated may develop cirrhosis and eventually hepatocellular carcinoma. This study aims to enlighten pathways associated with HBV related liver fibrosis for delineation of potential new therapeutic targets and biomarkers. Methods: Tissue samples from 47 HBV infected patients with different fibrotic stages (F1 to F6) were enrolled for 2D-DIGE proteomic screening. Differentially expressed proteins were identified by mass spectrometry and verified by western blotting. Functional proteomic associations were analyzed by EnrichNet application. Results: Fibrotic stage variations were observed for apolipoprotein A1 (APOA1), pyruvate kinase PKM (KPYM), glyceraldehyde 3-phospahate dehydrogenase (GAPDH), glutamate dehydrogenase (DHE3), aldehyde dehydrogenase (ALDH2), alcohol dehydrogenase (ALDH1A1), transferrin (TRFE), peroxiredoxin 3 (PRDX3), phenazine biosynthesis-like domain-containing protein (PBLD), immuglobulin kappa chain C region (IGKC), annexin A4 (ANXA4), keratin 5 (KRT5). Enrichment analysis with Reactome and Kegg databases highlighted the possible involvement of platelet release, glycolysis and HDL mediated lipid transport pathways. Moreover, string analysis revealed that HIF-1 alpha (Hypoxia-inducible factor 1-alpha), one of the interacting partners of HBx (Hepatitis B X protein), may play a role in the altered glycolytic response and oxidative stress observed in liver fibrosis. Conclusions: To our knowledge, this is the first protomic research that studies HBV infected fibrotic human liver tissues to investigate alterations in protein levels and affected pathways among different fibrotic stages. Observed changes in the glycolytic pathway caused by HBx presence and therefore its interactions with HIF-1a can be a target pathway for novel therapeutic purposes.
  • Item
    Transcriptomics and Proteomics Analyses Reveal JAK Signaling and Inflammatory Phenotypes during Cellular Senescence in Blind Mole Rats: The Reflections of Superior Biology
    (MDPI, 2022-01-01) Inci, Nurcan; Akyildiz, Erdogan Oguzhan; Bulbul, Abdullah Alper; Turanli, Eda Tahir; Akgun, Emel; Baykal, Ahmet Tarik; Colak, Faruk; Bozaykut, Perinur
    The blind mole rat (BMR), a long-living subterranean rodent, is an exceptional model for both aging and cancer research since they do not display age-related phenotypes or tumor formation. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is a cytokine-stimulated pathway that has a crucial role in immune regulation, proliferation, and cytokine production. Therefore, the pathway has recently attracted interest in cellular senescence studies. Here, by using publicly available data, we report that JAK-STAT signaling was suppressed in the BMR in comparison to the mouse. Interestingly, our experimental results showed upregulated Jak1/2 expressions in BMR fibroblasts during the replicative senescence process. The transcriptomic analysis using publicly available data also demonstrated that various cytokines related to JAK-STAT signaling were upregulated in the late passage cells, while some other cytokines such as MMPs and SERPINs were downregulated, representing a possible balance of senescence-associated secretory phenotypes (SASPs) in the BMR. Finally, our proteomics data also confirmed cytokine-mediated signaling activation in senescent BMR fibroblasts. Together, our findings suggest the critical role of JAK-STAT and cytokine-mediated signaling pathways during cellular senescence, pointing to the possible contribution of divergent inflammatory factors to the superior resistance of aging and cancer in BMRs.