Araştırma Çıktıları

Permanent URI for this communityhttps://hdl.handle.net/11443/931

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Chemical composition and biological activities of Valeriana dioscoridis SM roots .
    (ELSEVIER, 2021-01-01) Sen-Utsukarci, Burcu; Kessler, Sonja M.; Akbal-Dagistan, Ozlem; Estep, Alden S.; Tabanca, Nurhayat; Kurkcuoglu, Mine; Demirci-Kayiran, Serpil; Eroglu-Ozkan, Esra; Gul, Zulfiye; Bardakci, Hilal; Becnel, James; Kiemer, Alexandra K.; Mat, Afife; Baser, Kemal Husnu Can
    Zika, dengue, and Yellow fever are transmitted primarily by Aedes aegypti mosquitoes. Investigations to find more natural but highly effective pesticidal agents against Ae. aegypti have increased in the last few years. Plant-based compounds have been the source of several current pesticides and have provided models for creation of synthetic derivatives like the pyrethroids. Plants continue to be a rich source for potential new active ingredients. The aim of this study is to increase knowledge on V. dioscoridis and to present the results of the cytotoxic and insecticidal activities of various extracts of its roots and volatile compound compositions of roots. The hexane and chloroform extracts, HM1 and CM1 respectively, exhibited cytotoxicity with IC50 values of 128.4 and 86.93 mg/mL against the HepG2 cell line. Because CM1 had higher cytotoxicity across the studied concentration range, it was also tested against the HUVEC cell line. Extracts HM1 and CM1 were also tested for their insecticidal activities. CM1 was found to be the more active (mortality (\%) = 96.7\% +/- 5.8 at 5 mu g/mosquito), consistent with its cytotoxic activity. Since these active extracts were nonpolar, the chemical composition of the volatile compounds of the roots were analyzed by GC-MS analysis. About 87.7\% of the essential oil were characterized. The major compound was beta-eudesmol (9.2\%), following by camphene (8.9\%), bornyl acetate (8.2\%) and maaliol (7.6\%). This is the first study on the HepG2 and HUVEC cytotoxicity and insecticidal activity of V. dioscoridis. Further studies on the potential of this plant to define the spectrum of activity and examine potential therapeutic agents is warranted. (C) 2021 SAAB. Published by Elsevier B.V. All rights reserved.
  • Thumbnail Image
    Item
    Combretastatins: An Overview of Structure, Probable Mechanisms of Action and Potential Applications
    (MDPI, 2020-01-01) Karatoprak, Gokce Seker; Akkol, Esra Kupeli; Genc, Yasin; Bardakci, Hilal; Yucel, Cigdem; Sobarzo-Sanchez, Eduardo
    Combretastatins are a class of closely related stilbenes (combretastatins A), dihydrostilbenes (combretastatins B), phenanthrenes (combretastatins C) and macrocyclic lactones (combretastatins D) found in the bark of Combretum caffrum (Eckl. \& Zeyh.) Kuntze, commonly known as the South African bush willow. Some of the compounds in this series have been shown to be among the most potent antitubulin agents known. Due to their structural simplicity many analogs have also been synthesized. Combretastatin A4 phosphate is the most frequently tested compounds in preclinical and clinical trials. It is a water-soluble prodrug that the body can rapidly metabolize to combretastatin A4, which exhibits anti-tumor properties. In addition, in vitro and in vivo studies on combretastatins have determined that these compounds also have antioxidant, anti-inflammatory and antimicrobial effects. Nano-based formulations of natural or synthetic active agents such as combretastatin A4 phosphate exhibit several clear advantages, including improved low water solubility, prolonged circulation, drug targeting properties, enhanced efficiency, as well as fewer side effects. In this review, a synopsis of the recent literature exploring the combretastatins, their potential effects and nanoformulations as lead compounds in clinical applications is provided.
  • Thumbnail Image
    Item
    Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products
    (HINDAWI LTD, 2022-01-01) Akkol, Esra Kuepeli; Bardakci, Hilal; Barak, Timur Hakan; Aschner, Michael; Karatoprak, Goekce Seker; Khan, Haroon; Hussain, Yaseen
    Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy
  • Thumbnail Image
    Item
    Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations
    (MDPI, 2020-01-01) Genc, Yasin; Bardakci, Hilal; Yucel, Cigdem; Karatoprak, Gokce Seker; Akkol, Esra Kupeli; Barak, Timur Hakan; Sobarzo-Sanchez, Eduardo
    Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, beta-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
  • Thumbnail Image
    Item
    A New Perspective on the Treatment of Alzheimer's Disease and Sleep Deprivation-Related Consequences: Can Curcumin Help?
    (HINDAWI LTD, 2022-01-01) Kuepeli Akkol, Esra; Bardakci, Hilal; Yuecel, Cigdem; Seker Karatoprak, Goekce; Karpuz, Buesra; Khan, Haroon
    Sleep disturbances, as well as sleep-wake rhythm disorders, are characteristic symptoms of Alzheimer's disease (AD) that may head the other clinical signs of this neurodegenerative disease. Age-related structural and physiological changes in the brain lead to changes in sleep patterns. Conditions such as AD affect the cerebral cortex, basal forebrain, locus coeruleus, and the hypothalamus, thus changing the sleep-wake cycle. Sleep disorders likewise adversely affect the course of the disease. Since the sleep quality is important for the proper functioning of the memory, impaired sleep is associated with problems in the related areas of the brain that play a key role in learning and memory functions. In addition to synthetic drugs, utilization of medicinal plants has become popular in the treatment of neurological diseases. Curcuminoids, which are in a diarylheptanoid structure, are the main components of turmeric. Amongst them, curcumin has multiple applications in treatment regimens of various diseases such as cardiovascular diseases, obesity, cancer, inflammatory diseases, and aging. Besides, curcumin has been reported to be effective in different types of neurodegenerative diseases. Scientific studies exclusively showed that curcumin leads significant improvements in the pathological process of AD. Yet, its low solubility hence low bioavailability is the main therapeutic limitation of curcumin. Although previous studies have focused different types of advanced nanoformulations of curcumin, new approaches are needed to solve the solubility problem. This review summarizes the available scientific data, as reported by the most recent studies describing the utilization of curcumin in the treatment of AD and sleep deprivation-related consequences.