Araştırma Çıktıları
Permanent URI for this communityhttps://hdl.handle.net/11443/931
Browse
20 results
Search Results
Item Clinical Proton MR Spectroscopy in Central Nervous System Disorders(RADIOLOGICAL SOC NORTH AMERICA, 2014-01-01) Gulin, O. Z.; Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dincer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; Gonzalez, Ramon Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hueppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjanska, Malgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkac, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.; Grp, M.R.S. ConsensusA large body of published work shows that proton (hydrogen 1 {[}H-1]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. (c) RSNA, 2014Item Associations of meningioma molecular subgroup and tumor recurrence(OXFORD UNIV PRESS INC, 2021-01-01) Youngblood, Mark W.; Miyagishima, Danielle F.; Jin, Lan; Gupte, Trisha; Li, Chang; Duran, Daniel; Montejo, Julio D.; Zhao, Amy; Sheth, Amar; Tyrtova, Evgeniya; Ozduman, Koray; Iacoangeli, Francesco; Peyre, Matthieu; Boetto, Julien; Pease, Matthew; Avsar, Timucin; Huttner, Anita; Bilguvar, Kaya; Kilic, Turker; Pamir, M. Necmettin; Amankulor, Nduka; Kalamarides, Michel; Erson-Omay, E. Zeynep; Gunel, Murat; Moliterno, JenniferBackground. We and others have identified mutually exclusive molecular subgroups of meningiomasItem Information theory approaches to improve glioma diagnostic workflows in surgical neuropathology(WILEY, 2022-01-01) Cevik, Lokman; Landrove, Marilyn Vazquez; Aslan, Mehmet Tahir; Khammad, Vasilii; Garagorry Guerra, Francisco Jose; Cabello-Izquierdo, Yolanda; Wang, Wesley; Zhao, Jing; Becker, Aline Paixao; Czeisler, Catherine; Rendeiro, Anne Costa; Sousa Veras, Lucas Luis; Zanon, Maicon Fernando; Reis, Rui Manuel; Matsushita, Marcus de Medeiros; Ozduman, Koray; Pamir, M. Necmettin; Danyeli, Ayca Ersen; Pearce, Thomas; Felicella, Michelle; Eschbacher, Jennifer; Arakaki, Naomi; Martinetto, Horacio; Parwani, Anil; Thomas, Diana L.; Otero, Jose JavierAims Resource-strained healthcare ecosystems often struggle with the adoption of the World Health Organization (WHO) recommendations for the classification of central nervous system (CNS) tumors. The generation of robust clinical diagnostic aids and the advancement of simple solutions to inform investment strategies in surgical neuropathology would improve patient care in these settings. Methods We used simple information theory calculations on a brain cancer simulation model and real-world data sets to compare contributions of clinical, histologic, immunohistochemical, and molecular information. An image noise assay was generated to compare the efficiencies of different image segmentation methods in H\&E and Olig2 stained images obtained from digital slides. An auto-adjustable image analysis workflow was generated and compared with neuropathologists for p53 positivity quantification. Finally, the density of extracted features of the nuclei, p53 positivity quantification, and combined ATRX/age feature was used to generate a predictive model for 1p/19q codeletion in IDH-mutant tumors. Results Information theory calculations can be performed on open access platforms and provide significant insight into linear and nonlinear associations between diagnostic biomarkers. Age, p53, and ATRX status have significant information for the diagnosis of IDH-mutant tumors. The predictive models may facilitate the reduction of false-positive 1p/19q codeletion by fluorescence in situ hybridization (FISH) testing. Conclusions We posit that this approach provides an improvement on the cIMPACT-NOW workflow recommendations for IDH-mutant tumors and a framework for future resource and testing allocation.Item IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation(NATURE PUBLISHING GROUP, 2016-01-01) Oktay, Yavuz; Ulgen, Ege; Can, Ozge; Akyerli, Cemaliye B.; Yuksel, Sirin; Erdemgil, Yigit; Durasi, I. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Sevin; Ozpinar, Aysel; Huse, Jason T.; Sav, M. Aydin; Flanagan, Adrienne; Gunel, Murat; Sezerman, O. Ugur; Yakicier, M. Cengiz; Pamir, M. Necmettin; Ozduman, KorayThe single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17-16.52Item High-resolution Whole-Genome Analysis of Skull Base Chordomas Implicates FHIT Loss in Chordoma Pathogenesis(NEOPLASIA PRESS, 2012-01-01) Diaz, Roberto Jose; Guduk, Mustafa; Romagnuolo, Rocco; Smith, Christian A.; Northcott, Paul; Shih, David; Berisha, Fitim; Flanagan, Adrienne; Munoz, David G.; Cusimano, Michael D.; Pamir, M. Necmettin; Rutka, James T.Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemo-therapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22\%) than previously reported for sacral chordoma. At a similar frequency (21\%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98\% of sacral chordomas and 67\% of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm. Neoplasia (2012) 14, 788-798Item MEOX2 homeobox gene promotes growth of malignant gliomas(OXFORD UNIV PRESS INC, 2022-01-01) Schoenrock, Anna; Heinzelmann, Elisa; Steffl, Bianca; Demirdizen, Engin; Narayanan, Ashwin; Krunic, Damir; Baehr, Marion; Park, Jong-Whi; Schmidt, Claudia; Oezduman, Koray; Pamir, M. Necmettin; Wick, Wolfgang; Bestvater, Felix; Weichenhan, Dieter; Plass, Christoph; Taranda, Julian; Mall, Moritz; Turcan, SevinBackground Glioblastoma (GBM) is an aggressive tumor that frequently exhibits gain of chromosome 7, loss of chromosome 10, and aberrantly activated receptor tyrosine kinase signaling pathways. Previously, we identified Mesenchyme Homeobox 2 (MEOX2), a gene located on chromosome 7, as an upregulated transcription factor in GBM. Overexpressed transcription factors can be involved in driving GBM. Here, we aimed to address the role of MEOX2 in GBM. Methods Patient-derived GBM tumorspheres were used to constitutively knockdown or overexpress MEOX2 and subjected to in vitro assays including western blot to assess ERK phosphorylation. Cerebral organoid models were used to investigate the role of MEOX2 in growth initiation. Intracranial mouse implantation models were used to assess the tumorigenic potential of MEOX2. RNA-sequencing, ACT-seq, and CUT\&Tag were used to identify MEOX2 target genes. Results MEOX2 enhanced ERK signaling through a feed-forward mechanism. We identified Ser(155) as a putative ERK-dependent phosphorylation site upstream of the homeobox-domain of MEOX2. S155A substitution had a major effect on MEOX2 protein levels and altered its subnuclear localization. MEOX2 overexpression cooperated with p53 and PTEN loss in cerebral organoid models of human malignant gliomas to induce cell proliferation. Using high-throughput genomics, we identified putative transcriptional target genes of MEOX2 in patient-derived GBM tumorsphere models and a fresh frozen GBM tumor. Conclusions We identified MEOX2 as an oncogenic transcription regulator in GBM. MEOX2 increases proliferation in cerebral organoid models of GBM and feeds into ERK signaling that represents a core signaling pathway in GBM.Item Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO(AMER ASSOC ADVANCEMENT SCIENCE, 2013-01-01) Clark, Victoria E.; Erson-Omay, E. Zeynep; Serin, Akdes; Yin, Jun; Cotney, Justin; Oezduman, Koray; Avsar, Timuin; Li, Jie; Murray, Phillip B.; Henegariu, Octavian; Yilmaz, Saliha; Guenel, Jennifer Moliterno; Carrion-Grant, Geneive; Yilmaz, Baran; Grady, Conor; Tanrikulu, Bahattin; Bakircioglu, Mehmet; Kaymakcalan, Hande; Caglayan, Ahmet Okay; Sencar, Leman; Ceyhun, Emre; Atik, A. Fatih; Bayri, Yasar; Bai, Hanwen; Kolb, Luis E.; Hebert, Ryan M.; Omay, S. Bulent; Mishra-Gorur, Ketu; Choi, Murim; Overton, John D.; Holland, Eric C.; Mane, Shrikant; State, Matthew W.; Bilguevar, Kaya; Baehring, Joachim M.; Gutin, Philip H.; Piepmeier, Joseph M.; Vortmeyer, Alexander; Brennan, Cameron W.; Pamir, M. Necmettin; Kilic, Tuerker; Lifton, Richard P.; Noonan, James P.; Yasuno, Katsuhito; Guenel, MuratWe report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation ( K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in similar to 5\% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics.Item Integrated genomic characterization of IDH1-mutant glioma malignant progression(NATURE PUBLISHING GROUP, 2016-01-01) Bai, Hanwen; Harmanci, Akdes Serin; Erson-Omay, E. Zeynep; Li, Jie; Coskun, Sueleyman; Simon, Matthias; Krischek, Boris; Ozduman, Koray; Omay, S. Buelent; Sorensen, Eric A.; Turcan, Sevin; Bakirciglu, Mehmet; Carrion-Grant, Geneive; Murray, Phillip B.; Clark, Victoria E.; Ercan-Sencicek, A. Gulhan; Knight, James; Sencar, Leman; Altinok, Selin; Kaulen, Leon D.; Guelez, Burcu; Timmer, Marco; Schramm, Johannes; Mishra-Gorur, Ketu; Henegariu, Octavian; Moliterno, Jennifer; Louvi, Angeliki; Chan, Timothy A.; Tannheimer, Stacey L.; Pamir, M. Necmettin; Vortmeyer, Alexander O.; Bilguvar, Kaya; Yasuno, Katsuhito; Guenel, MuratGliomas represent approximately 30\% of all central nervous system tumors and 80\% of malignant brain tumors(1). To understand the molecular mechanisms underlying the malignant progression of low-grade gliomas with mutations in IDH1 (encoding isocitrate dehydrogenase 1), we studied paired tumor samples from 41 patients, comparing higher-grade, progressed samples to their lower-grade counterparts. Integrated genomic analyses, including whole-exome sequencing and copy number, gene expression and DNA methylation profiling, demonstrated nonlinear clonal expansion of the original tumors and identified oncogenic pathways driving progression. These include activation of the MYC and RTK-RAS-PI3K pathways and upregulation of the FOXM1- and E2F2-mediated cell cycle transitions, as well as epigenetic silencing of developmental transcription factor genes bound by Polycomb repressive complex 2 in human embryonic stem cells. Our results not only provide mechanistic insight into the genetic and epigenetic mechanisms driving glioma progression but also identify inhibition of the bromodomain and extraterminal (BET) family as a potential therapeutic approach.Item Mutations and Copy Number Alterations in IDH Wild-Type Glioblastomas Are Shaped by Different Oncogenic Mechanisms(MDPI, 2020-01-01) Ulgen, Ege; Karacan, Sila; Gerlevik, Umut; Can, Ozge; Bilguvar, Kaya; Oktay, Yavuz; B. Akyerli, Cemaliye; K. Yuksel, Sirin; E. Danyeli, Ayca; Tihan, Tarik; Sezerman, O. Ugur; Yakicier, M. Cengiz; Pamir, M. Necmettin; Ozduman, KorayLittle is known about the mutational processes that shape the genetic landscape of gliomas. Numerous mutational processes leave marks on the genome in the form of mutations, copy number alterations, rearrangements or their combinations. To explore gliomagenesis, we hypothesized that gliomas with different underlying oncogenic mechanisms would have differences in the burden of various forms of these genomic alterations. This was an analysis on adult diffuse gliomas, but IDH-mutant gliomas as well as diffuse midline gliomas H3-K27M were excluded to search for the possible presence of new entities among the very heterogenous group of IDH-WT glioblastomas. The cohort was divided into two molecular subsets: (1) Molecularly-defined GBM (mGBM) as those that carried molecular features of glioblastomas (including TERT promoter mutations, 7/10 pattern, or EGFR-amplification), and (2) those who did not (others). Whole exome sequencing was performed for 37 primary tumors and matched blood samples as well as 8 recurrences. Single nucleotide variations (SNV), short insertion or deletions (indels) and copy number alterations (CNA) were quantified using 5 quantitative metrics (SNV burden, indel burden, copy number alteration frequency-wGII, chromosomal arm event ratio-CAER, copy number amplitude) as well as 4 parameters that explored underlying oncogenic mechanisms (chromothripsis, double minutes, microsatellite instability and mutational signatures). Findings were validated in the TCGA pan-glioma cohort. mGBM and ``Others{''} differed significantly in their SNV (only in the TCGA cohort) and CNA metrics but not indel burden. SNV burden increased with increasing age at diagnosis and at recurrences and was driven by mismatch repair deficiency. On the contrary, indel and CNA metrics remained stable over increasing age at diagnosis and with recurrences. Copy number alteration frequency (wGII) correlated significantly with chromothripsis while CAER and CN amplitude correlated significantly with the presence of double minutes, suggesting separate underlying mechanisms for different forms of CNA.Item Somatic POLE mutations cause an ultramutated giant cell high-grade glioma subtype with better prognosis(OXFORD UNIV PRESS INC, 2015-01-01) Erson-Omay, E. Zeynep; Caglayan, Ahmet Okay; Schultz, Nikolaus; Weinhold, Nils; Omay, S. Bulent; Ozduman, Koray; Koksal, Yavuz; Li, Jie; Harmanci, Akdes Serin; Clark, Victoria; Carrion-Grant, Geneive; Baranoski, Jacob; Caglar, Caner; Barak, Tanyeri; Coskun, Suleyman; Baran, Burcin; Kose, Dogan; Sun, Jia; Bakircioglu, Mehmet; Gunel, Jennifer Moliterno; Pamir, M. Necmettin; Mishra-Gorur, Ketu; Bilguvar, Kaya; Yasuno, Katsuhito; Vortmeyer, Alexander; Huttner, Anita J.; Sander, Chris; Gunel, MuratBackground. Malignant high-grade gliomas (HGGs), including the most aggressive form, glioblastoma multiforme, show significant clinical and genomic heterogeneity. Despite recent advances, the overall survival of HGGs and their response to treatment remain poor. In order to gain further insight into disease pathophysiology by correlating genomic landscape with clinical behavior, thereby identifying distinct HGG molecular subgroups associated with improved prognosis, we performed a comprehensive genomic analysis. Methods. We analyzed and compared 720 exome-sequenced gliomas (136 from Yale, 584 from The Cancer Genome Atlas) based on their genomic, histological, and clinical features. Results. We identified a subgroup of HGGs (6 total, 4 adults and 2 children) that harbored a statistically significantly increased number of somatic mutations (mean = 9257.3 vs 76.2, P = .002). All of these ``ultramutated{''} tumors harbored somatic mutations in the exonuclease domain of the polymerase epsilon gene (POLE), displaying a distinctive genetic profile, characterized by genomic stability and increased C-to-A transversions. Histologically, they all harbored multinucleated giant or bizarre cells, some with predominant infiltrating immune cells. One adult and both pediatric patients carried homozygous germline mutations in the mutS homolog 6 (MSH6) gene. In adults, POLE mutations were observed in patients younger than 40 years and were associated with a longer progression-free survival. Conclusions. We identified a genomically, histologically, and clinically distinct subgroup of HGGs that harbored somatic POLE mutations and carried an improved prognosis. Identification of distinctive molecular and pathological HGG phenotypes has implications not only for improved classification but also for potential targeted treatments.