Araştırma Çıktıları
Permanent URI for this communityhttps://hdl.handle.net/11443/931
Browse
2 results
Search Results
Item Effect of modified Blalock-Taussig shunt anastomosis angle and pulmonary artery diameter on pulmonary flow(TURKISH SOC CARDIOLOGY, 2018-01-01) Arnaz, Ahmet; Piskin, Senol; Oguz, Gokece Nur; Yalcinbas, Yusuf; Pekkan, Kerem; Sarioglu, TayyarObjective: This study aimed to identify the best graft-to-pulmonary artery (PA) anastomosis angle measuring pulmonary blood flow, wall shear stress (WSS), and shunt flow. Methods: A tetralogy of Fallot with pulmonary atresia computer model was used to study three different modified Blalock-Taussig shunt (mBTS) anastomosis angle configurations with three different PA diameter configurations. Velocity and WSS were analyzed, and the flow rates at the right PA (RPA) and left PA (LPA) were calculated. Results: A 4-mm and 8-mm diameter of RPA and LPA, respectively with vertical shunt angle produces the highest total flow. In the RPA larger diameter than the LPA configutations, the left-leaning shunt produces the lowest total PA flow whereas in the LPA larger diameter than the RPA configuratios, the right-leaning shunt produces the lowest total PA flow. Therefore, the shunt anastomosis should not be leaned through the narrow side of PA to reach best flow. As the flow inside the shunt increased, WSS also increased due to enhanced velocity gradients. Conclusion: The anastomosis angle between the conduit and PA affects the flow to PA. Vertical anastomosis configurations increase the total PA flowItem In vitro validation of a self-driving aortic-turbine venous-assist device for Fontan patients(MOSBY-ELSEVIER, 2018-01-01) Pekkan, Kerem; Aka, Ibrahim Basar; Tutsak, Ece; Ermek, Erhan; Balim, Haldun; Lazoglu, Ismail; Turkoz, RizaBackground: Palliative repair of single ventricle defects involve a series of open-heart surgeries where a single-ventricle (Fontan) circulation is established. As the patient ages, this paradoxical circulation gradually fails, because of its high venous pressure levels. Reversal of the Fontan paradox requires an extra subpulmonic energy that can be provided through mechanical assist devices. The objective of this study was to evaluate the hemodynamic performance of a totally implantable integrated aortic-turbine venous-assist (iATVA) system, which does not need an external drive power and maintains low venous pressure chronically, for the Fontan circulation. Methods: Blade designs of the co-rotating turbine and pump impellers were developed and 3 prototypes were manufactured. After verifying the single-ventricle physiology at a pulsatile in vitro circuit, the hemodynamic performance of the iATVA system was measured for pediatric and adult physiology, varying the aortic steal percentage and circuit configurations. The iATVA system was also tested at clinical off-design scenarios. Results: The prototype iATVA devices operate at approximately 800 revolutions per minute and extract up to 10\% systemic blood from the aorta to use this hydrodynamic energy to drive a blood turbine, which in turn drives a mixed-flow venous pump passively. By transferring part of the available energy from the single-ventricle outlet to the venous side, the iATVA system is able to generate up to approximately 5 mm Hg venous recovery while supplying the entire caval flow. Conclusions: Our experiments show that a totally implantable iATVA system is feasible, which will eliminate the need for external power for Fontan mechanical venous assist and combat gradual postoperative venous remodeling and Fontan failure.