Araştırma Çıktıları

Permanent URI for this communityhttps://hdl.handle.net/11443/931

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Dynamic predictions of kidney graft survival in the presence of longitudinal outliers
    (SAGE PUBLICATIONS LTD, 2021-01-01) Asar, Ozgur; Fournier, Marie-Cecile; Dantan, Etienne
    In kidney transplantation, dynamic predictions of graft survival may be obtained from joint modelling of longitudinal and survival data for which a common assumption is that random-effects and error terms in the longitudinal sub-model are Gaussian. However, this assumption may be too restrictive, e.g. in the presence of outliers, and more flexible distributions would be required. In this study, we relax the Gaussian assumption by defining a robust joint modelling framework witht-distributed random-effects and error terms to obtain dynamic predictions of graft survival for kidney transplant patients. We take a Bayesian paradigm for inference and dynamic predictions and sample from the joint posterior densities. While previous research reported improved performances of robust joint models compared to the Gaussian version in terms of parameter estimation, dynamic prediction accuracy obtained from such approach has not been yet evaluated. Our results based on a training sample from the French DIVAT kidney transplantation cohort illustrate that estimates for the slope parameters in the longitudinal and survival sub-models are sensitive to the distributional assumptions. From both an internal validation sample from the DIVAT cohort and an external validation sample from the Lille (France) and Leuven (Belgium) transplantation centers, calibration and discrimination performances appeared to be better under the robust joint models compared to the Gaussian version, illustrating the need to accommodate outliers in the dynamic prediction context. Simulation results support the findings of the validation studies.
  • Item
    Bayesian analysis of Turkish Income and Living Conditions data, using clustered longitudinal ordinal modelling with Bridge distributed random effects
    (SAGE PUBLICATIONS LTD, 2021-01-01) Asar, Ozgur
    This article is motivated by the panel surveys, called Statistics on Income and Living Conditions (SILC), conducted annually on (randomly selected) country representative households to monitor EU 2020 aims on poverty reduction. We particularly consider the surveys conducted in Turkey within the scope of integration to the EU. Our main interests are on health aspects of economic and living conditions. The outcome is self-reported health that is clustered longitudinal ordinal, since repeated measures of it are nested within individuals and individuals are nested within families. Economic and living conditions have been measured through a number of individual- and family-level explanatory variables. The questions of interest are on the marginal relationships between the outcome and covariates that we address using a polytomous logistic regression with Bridge distributed random effects. This choice of distribution allows us to directly obtain marginal inferences in the presence of random effects. Widely used Normal distribution is also considered as the random effects distribution. Samples from the joint posterior densities of parameters and random effects are drawn using Markov Chain Monte Carlo. Interesting findings from the public health point of view are that differences were found between the subgroups of employment status, income level and panel year in terms of odds of reporting better health.