Araştırma Çıktıları
Permanent URI for this communityhttps://hdl.handle.net/11443/931
Browse
3 results
Search Results
Item Information theory approaches to improve glioma diagnostic workflows in surgical neuropathology(WILEY, 2022-01-01) Cevik, Lokman; Landrove, Marilyn Vazquez; Aslan, Mehmet Tahir; Khammad, Vasilii; Garagorry Guerra, Francisco Jose; Cabello-Izquierdo, Yolanda; Wang, Wesley; Zhao, Jing; Becker, Aline Paixao; Czeisler, Catherine; Rendeiro, Anne Costa; Sousa Veras, Lucas Luis; Zanon, Maicon Fernando; Reis, Rui Manuel; Matsushita, Marcus de Medeiros; Ozduman, Koray; Pamir, M. Necmettin; Danyeli, Ayca Ersen; Pearce, Thomas; Felicella, Michelle; Eschbacher, Jennifer; Arakaki, Naomi; Martinetto, Horacio; Parwani, Anil; Thomas, Diana L.; Otero, Jose JavierAims Resource-strained healthcare ecosystems often struggle with the adoption of the World Health Organization (WHO) recommendations for the classification of central nervous system (CNS) tumors. The generation of robust clinical diagnostic aids and the advancement of simple solutions to inform investment strategies in surgical neuropathology would improve patient care in these settings. Methods We used simple information theory calculations on a brain cancer simulation model and real-world data sets to compare contributions of clinical, histologic, immunohistochemical, and molecular information. An image noise assay was generated to compare the efficiencies of different image segmentation methods in H\&E and Olig2 stained images obtained from digital slides. An auto-adjustable image analysis workflow was generated and compared with neuropathologists for p53 positivity quantification. Finally, the density of extracted features of the nuclei, p53 positivity quantification, and combined ATRX/age feature was used to generate a predictive model for 1p/19q codeletion in IDH-mutant tumors. Results Information theory calculations can be performed on open access platforms and provide significant insight into linear and nonlinear associations between diagnostic biomarkers. Age, p53, and ATRX status have significant information for the diagnosis of IDH-mutant tumors. The predictive models may facilitate the reduction of false-positive 1p/19q codeletion by fluorescence in situ hybridization (FISH) testing. Conclusions We posit that this approach provides an improvement on the cIMPACT-NOW workflow recommendations for IDH-mutant tumors and a framework for future resource and testing allocation.Item Mutations and Copy Number Alterations in IDH Wild-Type Glioblastomas Are Shaped by Different Oncogenic Mechanisms(MDPI, 2020-01-01) Ulgen, Ege; Karacan, Sila; Gerlevik, Umut; Can, Ozge; Bilguvar, Kaya; Oktay, Yavuz; B. Akyerli, Cemaliye; K. Yuksel, Sirin; E. Danyeli, Ayca; Tihan, Tarik; Sezerman, O. Ugur; Yakicier, M. Cengiz; Pamir, M. Necmettin; Ozduman, KorayLittle is known about the mutational processes that shape the genetic landscape of gliomas. Numerous mutational processes leave marks on the genome in the form of mutations, copy number alterations, rearrangements or their combinations. To explore gliomagenesis, we hypothesized that gliomas with different underlying oncogenic mechanisms would have differences in the burden of various forms of these genomic alterations. This was an analysis on adult diffuse gliomas, but IDH-mutant gliomas as well as diffuse midline gliomas H3-K27M were excluded to search for the possible presence of new entities among the very heterogenous group of IDH-WT glioblastomas. The cohort was divided into two molecular subsets: (1) Molecularly-defined GBM (mGBM) as those that carried molecular features of glioblastomas (including TERT promoter mutations, 7/10 pattern, or EGFR-amplification), and (2) those who did not (others). Whole exome sequencing was performed for 37 primary tumors and matched blood samples as well as 8 recurrences. Single nucleotide variations (SNV), short insertion or deletions (indels) and copy number alterations (CNA) were quantified using 5 quantitative metrics (SNV burden, indel burden, copy number alteration frequency-wGII, chromosomal arm event ratio-CAER, copy number amplitude) as well as 4 parameters that explored underlying oncogenic mechanisms (chromothripsis, double minutes, microsatellite instability and mutational signatures). Findings were validated in the TCGA pan-glioma cohort. mGBM and ``Others{''} differed significantly in their SNV (only in the TCGA cohort) and CNA metrics but not indel burden. SNV burden increased with increasing age at diagnosis and at recurrences and was driven by mismatch repair deficiency. On the contrary, indel and CNA metrics remained stable over increasing age at diagnosis and with recurrences. Copy number alteration frequency (wGII) correlated significantly with chromothripsis while CAER and CN amplitude correlated significantly with the presence of double minutes, suggesting separate underlying mechanisms for different forms of CNA.Item Oncolytic Virus Therapy for Glioblastoma Multiforme Concepts and Candidates(LIPPINCOTT WILLIAMS \& WILKINS, 2012-01-01) Wollmann, Guido; Ozduman, Koray; van den Pol, Anthony N.Twenty years of oncolytic virus development have created a field that is driven by the potential promise of lasting impact on our cancer treatment repertoire. With the field constantly expanding-more than 20 viruses have been recognized as potential oncolytic viruses-new virus candidates continue to emerge even as established viruses reach clinical trials. They all share the defining commonalities of selective replication in tumors, subsequent tumor cell lysis, and dispersion within the tumor. Members from diverse virus classes with distinctly different biologies and host species have been identified. Of these viruses, 15 have been tested on human glioblastoma multiforme. So far, 20 clinical trials have been conducted or initiated using attenuated strains of 7 different oncolytic viruses against glioblastoma multiforme. In this review, we present an overview of viruses that have been developed or considered for glioblastoma multiforme treatment. We outline the principles of tumor targeting and selective viral replication, which include mechanisms of tumor-selective binding, and molecular elements usurping cellular biosynthetic machinery in transformed cells. Results from clinical trials have clearly established the proof of concept and have confirmed the general safety of oncolytic virus application in the brain. The moderate clinical efficacy has not yet matched the promising preclinical lab results