Privacy-Preserving Machine Learning (PPML) Inference for Clinically Actionable Models
| dc.contributor.author | Balaban, Baris | |
| dc.contributor.author | Magara, Seyma Selcan | |
| dc.contributor.author | Yilgor, Caglar | |
| dc.contributor.author | Yucekul, Altug | |
| dc.contributor.author | Obeid, Ibrahim | |
| dc.contributor.author | Pizones, Javier | |
| dc.contributor.author | Kleinstueck, Frank | |
| dc.contributor.author | Perez\\-Grueso, Francisco Javier Sanchez | |
| dc.contributor.author | Pellise, Ferran | |
| dc.contributor.author | Alanay, Ahmet | |
| dc.contributor.author | Savas, Erkay | |
| dc.contributor.author | Bagci, Cetin | |
| dc.contributor.author | Sezerman, Osman Ugur | |
| dc.contributor.author | European Spine Study Group, European Spine Study | |
| dc.date.accessioned | 2025-10-16T15:12:14Z | |
| dc.date.issued | 2025 | |
| dc.identifier.doi | 10.1109/ACCESS.2025.3540261 | |
| dc.identifier.other | WOS:001438240800035 | |
| dc.identifier.uri | https://openaccess.acibadem.edu.tr/handle/11443/5320 | |
| dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | |
| dc.source | IEEE ACCESS | |
| dc.subject | Data models | |
| dc.subject | Computational modeling | |
| dc.subject | Machine learning | |
| dc.subject | Machine learning algorithms | |
| dc.subject | Cryptography | |
| dc.subject | Accuracy | |
| dc.subject | Analytical models | |
| dc.subject | Inference algorithms | |
| dc.subject | Homomorphic encryption | |
| dc.subject | Data privacy | |
| dc.subject | Homomorphic Encryption | |
| dc.subject | Privacy\\-Preserving Machine Learning | |
| dc.subject | XGBoost | |
| dc.title | Privacy-Preserving Machine Learning (PPML) Inference for Clinically Actionable Models | |
| dc.type | Article |
