Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival

dc.contributor.authorBeker, Mustafa C.
dc.contributor.authorCaglayan, Berrak
dc.contributor.authorCaglayan, Ahmet B.
dc.contributor.authorKelestemur, Taha
dc.contributor.authorYalcin, Esra
dc.contributor.authorCaglayan, Aysun
dc.contributor.authorKilic, Ulkan
dc.contributor.authorBaykal, Ahmet T.
dc.contributor.authorReiter, Russel J.
dc.contributor.authorKilic, Ertugrul
dc.date.accessioned2023-02-21T12:36:52Z
dc.date.available2023-02-21T12:36:52Z
dc.date.issued2019-01-01
dc.description.abstractThe circadian rhythm is driven by a master clock within the suprachiasmatic nucleus which regulates the rhythmic secretion of melatonin. Bmal1 coordinates the rhythmic expression of transcriptome and regulates biological activities, involved in cell metabolism and aging. However, the role of Bmal1 in cellular- survival, signaling, its interaction with intracellular proteins, and how melatonin regulates its expression is largely unclear. Here we observed that melatonin increases the expression of Bmal1 and both melatonin and Bmal1 increase cellular survival after oxygen glucose deprivation (OGD) while the inhibition of Bmal1 resulted in the decreased cellular survival without affecting neuroprotective effects of melatonin. By using a planar surface immunoassay for PI3K/AKT signaling pathway components, we revealed that both melatonin and Bmal1 increased phosphorylation of AKT, ERK-1/2, PDK1, mTOR, PTEN, GSK-3 alpha beta, and p70S6K. In contrast, inhibition of Bmal1 resulted in decreased phosphorylation of these proteins, which the effect of melatonin on these signaling molecules was not affected by the absence of Bmal1 . Besides, the inhibition of PI3K/AKT decreased Bmal1 expression and the effect of melatonin on Bmal1 after both OGD in vitro and focal cerebral ischemia in vivo. Our data demonstrate that melatonin controls the expression of Bmal1 via PI3K/AKT signaling, and Bmal1 plays critical roles in cellular survival via activation of survival kinases.
dc.description.issueDEC 13
dc.description.volume9
dc.identifier.doi10.1038/s41598-019-55663-0
dc.identifier.urihttps://hdl.handle.net/11443/2163
dc.identifier.urihttp://dx.doi.org/10.1038/s41598-019-55663-0
dc.identifier.wosWOS:000503161500001
dc.publisherNATURE PUBLISHING GROUP
dc.relation.ispartofSCIENTIFIC REPORTS
dc.titleInteraction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598-019-55663-0.pdf
Size:
4.72 MB
Format:
Adobe Portable Document Format

Collections